Affine Springer fiber - sheaf correspandence (Juad w/Gorsky \& Obo mbov)

G / \mathbb{C} reductive $\quad N \in \operatorname{Rep}(G) \stackrel{\text { U1 }}{ } \xrightarrow{B F N} M_{c}(G, N)$ affine varicty

Uparde: $\quad 1 \rightarrow G \rightarrow \widetilde{G} \rightarrow G_{F} \rightarrow 1 \quad G_{F}$ diagon, liz,ble
(Think $\widetilde{G}=G \times \mathbb{C}_{m}, \mathbb{G}_{m} Q N$ bydilations, i.e. $N \in \operatorname{Rep}(\widetilde{G})$)

$$
M_{c}(G, N)=M_{c}(\widetilde{G}, N) / / G_{F}^{v} \quad \text {. Pich } \quad x \in X_{*}\left(G_{F}\right) \cong X^{*}\left(G_{F}^{v}\right)
$$

$\leadsto G T$ quatient $M_{c}^{x}(G, N) \longrightarrow M_{c}(G, N)$
In good casos," symplectic resolution"
Thm (Bezruhavalioo -Finkolbrg-Mirkovié)

$$
T^{*} T^{v} / w=\mu_{c}\left(G, A_{d}\right)
$$

$w \& T^{v} \quad$ fixad points $\longleftrightarrow \begin{aligned} & \text { nodes in affice } \\ & \text { Dyplin dinger. of } G .\end{aligned}$

$$
S_{2} Q \mathbb{C}^{x} \quad x \longmapsto x^{-1} \quad \text { fps } \text { are }\{ \pm 1\}
$$

T locally around these $f_{p s}$, this is $t \oplus E^{*} / w$, where t is a Cotan in Lie aljebre gyven by remaing corr. node.

$$
\text { BFN: } R_{G, N}=\left\{[g, s] \in G_{k}^{C_{x}} N_{\theta} \mid g s \in N_{\theta}\right\} \subset T_{G_{1}, N}:=G_{k} \times G_{\theta} N_{\theta}
$$

$$
\begin{aligned}
& (\theta=(\mathbb{(k +}+]) \\
& k=(\mathbb{C}+1))
\end{aligned}
$$

Recall $G_{r_{G}}=G(k) / G(\theta) \quad H_{*}(\Omega G) \otimes H_{*}(\Omega G) \rightarrow H_{*}(\Omega G)$
11.

MISO
$H_{*}^{G_{0}}\left(G_{r_{0}}\right) \otimes H_{*}^{G_{0}}\left(G_{r_{6}}\right) \longrightarrow H_{*}^{G_{0}}\left(G_{r_{6}}\right) \quad$ Commuthioe, essociative

$$
\begin{aligned}
& R_{G, N} \text { inhercto this malliplication: }
\end{aligned}
$$

$$
\begin{aligned}
& \downarrow \\
& T_{G, *} \times R_{G, N}=P G_{k} \times R_{G, N} \\
& \underset{\mathrm{Gr}_{6} \times \mathrm{Gr}_{G}}{\stackrel{1}{ }} \rightleftarrows \mathrm{G}_{4} \times \mathrm{Gr}_{G} \longrightarrow \mathrm{G}_{R} \times \mathrm{G}_{2} \mathrm{G}_{r} \rightarrow \mathrm{Gr} \\
& m_{*} q_{*} p^{*} ; H_{*}^{G_{0}}\left(R_{G, N}\right) \otimes H_{*}^{G_{\theta}}\left(R_{G, N}\right) \longrightarrow H_{*}^{G_{0}}\left(R_{G, N}\right) \\
& \text { commentass. + with ling } \quad \operatorname{Spec} H_{a}^{G_{a}}\left(R_{G}, N\right)=\mu_{c}(G, N) \cdots T^{*} T^{\nu} / w
\end{aligned}
$$

Next geal: upgorade this to $\left.M^{x}(G, N)^{2}\right)$ Shanews?

1) $x: \mathbb{C}_{m} \longrightarrow G_{F}$ gives other
"I/Alices" $\left.N_{i} \subset N_{k} \quad N_{i}=x(t)\right)^{i} \cdot N_{\theta} \subset N_{k}$
(Think $X: \mathbb{G}_{m} \xrightarrow{i d} \mathbb{G}_{m}, N_{i}=t^{i} \cdot N_{\theta} \subset N_{m}$)
Des.

$$
R_{j}=\left\{[g, s] \in C_{k}^{C_{\times}} N_{j} \mid g s \in N_{i}\right\}
$$

Convolution jives products

$$
{ }_{i} A_{j} \otimes_{j} A_{k} \longrightarrow{ }_{i} A_{k}, \text { where }{ }_{i} A_{j}=H_{*}^{G_{0}}\left({ }_{i} R_{j}\right)
$$

N.te: In this "commutitive" ase, it.j only degats on i-j

$$
\begin{aligned}
& \leadsto i A_{0} \otimes_{j} A_{0} \longrightarrow i+j A_{0} \\
& \left.\leadsto \operatorname{Proj}_{\substack{ \\
(\oplus y y y}}^{\oplus} i A_{0}\right) \equiv M_{c}^{x}(G, N) \longrightarrow M_{c}(G, N)
\end{aligned}
$$

$\underline{E x a m p l e} G=G L_{n}, N=A d, x=i l, G F=\mathbb{G}_{m}$

$$
M_{c}^{x}(G, N) \cong H_{i} b^{n}\left(\mathbb{C}^{x} \times \mathbb{C}\right) \longrightarrow T^{*} T^{v} / w
$$

($B=N: C_{n}$ add framing to get $\left.H_{i l} b^{n}\left(\widetilde{\mathbb{C}^{2}} / \Gamma\right) \longrightarrow S_{r^{-}}\left(C^{2} / r\right)\right)$
$\oint 2$. Spigere action
Wart: $H_{*}^{C_{*}}\left(R_{G, N}\right) \otimes H_{*}(x) \longrightarrow H_{*}(x)$
Hilburn-Kamitzer-Weeless "BFN Spriger"/"geneerlized affine Spinger"theory
Garner-K.

$$
N=A d: \quad S_{p \gamma}=\{[g] \in G_{r_{\sigma}} \mid g \gamma g^{-1} \in \underbrace{}_{{\underset{N}{i e}}^{L_{\sigma}} G(\theta)}\}
$$

$$
\cdots \quad \cdots \quad<\quad(r 1, r-1)_{a n-1} \stackrel{N}{0}_{0}
$$

Key lemme: Ld $\eta \subset N_{k} \quad G_{\theta}$-stable latice.

In puticuls

$$
H_{*}^{L_{\gamma}}(\underbrace{\left(\mu_{\gamma}\right)}_{\left(\text {Think } S_{p \gamma}\right)} \cong H_{*}^{G_{0}}\left(\eta \theta_{\gamma}\right)
$$

Convolution

$$
R_{i} x_{i} \theta_{\gamma} \leftarrow p^{-1}\left(R_{j} x_{i} \theta_{\gamma}\right) \rightarrow q^{-1}\left(j R_{i} x_{i} \theta_{\gamma}\right) \rightarrow j \theta_{\gamma}
$$

$$
\sim H_{*}^{G_{0}}\left({ }_{-j} R_{i}\right) \otimes H_{*}^{L_{\theta}}\left(S_{p+j \gamma}\right) \longrightarrow H_{*}^{L_{\gamma}}\left(S_{p+j \gamma}\right)
$$

Thm (GKO, BFM, BFN, Finkellogn Tsmblius,...) (G reductive, $N=A d)$

$$
\begin{aligned}
& G_{k} \cdot \gamma \cap \eta=\eta \theta_{\gamma} \quad \text { "orbital veviety" } \\
& S_{\text {thocur }}(\gamma)=L_{\gamma} \quad \eta X_{\gamma}=\left\{g \in G_{c} \mid g \cdot \gamma \in \eta\right\} \\
& { }_{\eta} O_{\gamma} \quad{ }_{\eta} M_{\gamma}=\left\{g \in G_{\sigma} \mid g \cdot \gamma \in \eta\right\} \\
& \text { K if } \eta=\text { ti }^{N_{\theta}}, \eta M_{\gamma}=S_{p+i \gamma}
\end{aligned}
$$

(There is a version with $I=$ luwhorii in place of C_{0}, st. ${ }_{0}{\widetilde{J_{0}}}_{0}=H_{x}^{I \times \epsilon_{m}^{r o t}}\left(\widetilde{R_{c, N}}\right)$)

$$
\cong H_{\hbar}^{t i g}
$$

+ The action

$$
-j A_{-i}^{k} \otimes H_{*}^{H_{y}}\left(S_{\rho \rho^{i} \gamma}\right) \longrightarrow H_{z}^{H_{\gamma}}\left(S_{p+j \gamma}\right) \quad\binom{H_{e r e}}{H_{\gamma} \subset L_{\gamma}}
$$

generalizes Springer action from $[O Y],[V V]$
Remus' Works for any $\gamma \in g(t))^{\text {rs. }}$ (quantization only OUC for homogeneous J) $\left(\right.$ Ex. $\left.T(\mathbb{C}) \subset T(K)=S_{t h} G_{(k)}\left({ }^{\alpha+}, \ldots a_{1} t\right)\right)$
$\ddot{\gamma} \leftrightarrow$ Procasi \quad (inerlar tiles)
Than
\mathbb{Z}-alone (lan's tall e)

The shat we get from the above construction, say F_{y} is $\underbrace{\theta(k)}_{11.11 . /^{x},-1}$

A way to show this is: 1) Compare $\oplus_{i} A_{j}^{*}$ to Gordon-Stiford
2) Use the fact that $H_{z}^{G_{m}}\left(S_{\rho_{\gamma}}\right)=e L_{\frac{\text { maxis }_{n}^{n}}{}(\text { riv }) ~}^{\text {1 }}$
3) Use Gocdon-Stasid's results on the image of $e L_{\frac{l_{n+1}}{n}} \quad$ under $\left(\oplus i A_{j}^{k}\right)$-grad $\longrightarrow \operatorname{Coh}\left(H:\left(b^{n}\left(\mathbb{C}^{2}\right)\right)\right.$
Ex. Slope $k=\frac{l_{n}}{n}$ homogeneous $\gamma=\operatorname{dag}\left(a_{1}, \ldots, a_{n}\right) \cdot f^{k}$
"u cal generated by antisym polpomints in
§3. Commuting varieties $\mathbb{C l}^{\prime}\left(T^{*} T^{v}\right]$

Def.

$$
\operatorname{Comman}^{v}=\left\{(g, x) \in G^{v} \times\left(g^{v}\right)^{*} \lg \times g^{-1}=x\right\}
$$

Than (Loser, based on Joseph)

$$
\begin{array}{r}
(\text { Comm G })_{\mathrm{red}} \cong T^{*} T^{v} / W \\
\\
\\
\\
M_{c}(G, A l)
\end{array}
$$

$$
\left(M_{a p}: \subset\left[G^{v} \cdot\left(g^{v}\right)^{*}\right]^{G^{v}}{ }^{\text {res }} x\left(T^{*} T^{v}\right]^{w}\right)
$$

Partial resolution: Thin

$$
e I^{(d)} \simeq H_{*}^{G \theta}\left(d R_{0}\right)
$$

$$
\begin{aligned}
& \left.\tilde{f}_{\gamma} \cong P\right|_{\text {Hel }^{n} b^{n}\left(C^{*} \times \mathbb{C}\right)} \\
& H_{*}^{\top}\left(S_{p \gamma}\right) \cong \bigcap_{\alpha \in \Phi^{+}}\left\langle 1-\alpha^{v}, y_{\alpha}\right\rangle^{k} \subset \mathbb{C}\left[T^{*} T^{v}\right] \\
& I^{\prime \prime}\left(\text { (To compare to } J_{u}^{k}\right. \text {, need Haimn) } \\
& \text { (T. prove this, need Haimn's results) }
\end{aligned}
$$

$e=\frac{1}{|w|} \sum_{w=w}^{w^{\prime}} \quad \operatorname{Proj}\left(\bigoplus_{d>0} e I^{(d)}\right) \longrightarrow T^{*} T^{v} / w$
Q. What does this γ look lick?

In cation. 1 case, let $I_{+}=\bigcap\left\langle x_{\alpha^{\nu}}, y_{\alpha}\right\rangle \subset \mathbb{C}\left(t \oplus t^{*}\right]$

Type $B C$: Expect this to de $\mathbb{Z} / 2 \mathbb{Z}$ - Hill $\left(\mathbb{C}^{2}\right)$
Geneal facts about \mathcal{F}_{γ} : if $H_{\gamma} \subset L_{\gamma}$ trivial
\{1\}
$\bigoplus_{i \geqslant 0} H_{*}\left(S_{\rho_{\gamma^{+}}}\right) \longrightarrow F_{\gamma} \quad$ supported on prime of

$$
\{0\} \times T^{2} / w
$$

If γ elliptic, \mathcal{F}_{γ} is supported at the preimege of fi.melel, many points in $T^{*} T^{\nu} / w$, and con use "endoscopic" decomposition $\left(N_{g a}\right)$

$$
H_{*}\left(S_{p \gamma}\right)=\bigoplus_{k<x_{(f+1)}} H_{+}\left(S_{p \gamma}\right)_{k} \quad \text { to wite }
$$

Sheaf at each of these points as $\widetilde{F}_{\gamma}^{H}$, for $H \subset G^{\prime}$ endoscopic group
Lives on a different variety

(In gean only knaw its a subvriety, need to know more about action to saymore)
Dimefte - Grio -Geraci - Hillbun: "Mircor symatry"

